A new monothalamous foraminiferan from 1000 to 6300 m water depth in the Weddell Sea: morphological and molecular characterisation

Andrew J. Goodaya,*, Maria Holzmannb, Jackie Guiardb, Nils Corneliusa, Jan Pawlowskib

aSouthampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK
bDepartment of Zoology and Animal Biology, University of Geneva Sciences III, CH1211 Geneva 4, Switzerland

Received 11 September 2003; received in revised form 8 March 2004; accepted 27 June 2004
Available online 18 October 2004

Abstract

We describe \textit{Bathyallogromia weddellensis} gen. & sp. nov., a deep-water, monothalamous foraminiferan from bathyal and abyssal sites in the western Weddell Sea. The species is characterised by a delicate, almost spherical, organic-walled test, a low, broad projecting apertural region, and light grey or greenish cytoplasm containing mineral grains and other inclusions. Molecular phylogenetic analyses, based on small subunit rRNA gene sequences, indicate that \textit{Bathyallogromia} is an independent lineage branching within a clade of monothalamous foraminiferans, which also includes such genera as \textit{Saccammina}, \textit{Gloioquillmia}, \textit{Cylindrogullmia}, \textit{Rhabdammina}, \textit{Toxisarcon} and \textit{Pilulina} (?). Lack of significant genetic differences between specimens collected at depths ranging from 1000 to 6300 m suggests that \textit{B. weddellensis} is adapted to conditions that span a broad bathymetric range.

c 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Relatively few species of monothalamous (single-chambered) organic-walled foraminiferans (‘allogromiid’) have been described from the deep sea and most of these are fairly robust forms belonging to genera such as \textit{Placopsilinella}, \textit{Nodellum} and \textit{Resigella}. In fact, delicate, undescribed allogromiid species are common and diverse in deep-sea settings (Gooday, 2002; Gooday et al., 2001, 2004). The purpose of this paper is to formally describe one of these species on the basis of samples obtained at bathyal and abyssal sites in a poorly studied region of the western Weddell Sea. The description is based on traditional morphological criteria combined with characterisation of molecular genetic sequences from specimens collected along a bathymetric gradient. The
availability of molecular data from different stations enables us to address the question of whether the new species exhibits genetic differentiation in relation to water depth.

2. Materials and methods

2.1. Sampling sites

Most of the material was collected at a series of stations in the western Weddell Sea during R/V Polarstern Cruise ANT-XIX/4 (Brandt et al., 2003) (Table 1; Fig. 1). Stations 131–134 were located along a transect down the continental slope on the eastern side of the Antarctic Peninsula (1080–4060 m). Stations 135–138 were located on the Weddell Abyssal Plain (4680–4980 m). Station 142 was situated at 6330 m depth in the South Sandwich Trench at the eastern extremity of the Scotia Sea.

The seafloor in the western Weddell Sea is overlain by Weddell Sea deep water and Weddell Sea bottom water. Bottom-water oxygen concentrations are not available from our sites but sediments at all the sites appeared to be well-oxygenated. The stations studied exhibited a variety of sediment types reflecting different hydrodynamic regimes (Howe, 2003). Clayey silt occurred at Stations 137 and 138, silty clays at Stations 131, 134–136, silty sand at Station 133 and sandy silts at the trench station (142). These sediments are interpreted as contourite deposits (Stations 131 and 133), a glaciogenic hemipelagite (Station 132), hemipelagites (Stations 134–137, 142) and a pelagite (Station 138). The contourites suggest moderate along-slope current activity, for which there is some photographic evidence at Station 131 on the lower slope (3055 m water depth).

2.2. Shipboard procedures

The allogromiids were collected between the 5th and 17th of March 2002. Sediment samples were obtained using either a box-core or a multiple corer equipped with 12 tubes, each of 57 mm internal diameter. As soon as possible after collection, the upper 1 cm or so of surface sediment was scooped off and then immediately sieved through 300 and 125 μm screens in a cool room set at 2°C. These unfixed residues were stored in the cool room for periods of several hours to several days. Living foraminifera were then sorted under a binocular microscope in a Petri dish of seawater kept cool in a dish of ice. Specimens for morphological study were fixed in buffered 10% formalin and stored in plastic centrifuge vials. Specimens for molecular analyses were transferred to microtubes containing 60 μl of guanidine DNA extraction buffer. The DNA extracts contained from 1 to 10 specimens per tube.

Some additional specimens were picked from the 150–300 μm and 63–125 μm fractions of samples used for a quantitative study of foraminiferal faunal characteristics (Cornelius and Gooday, 2004). These specimens were used to calculate the relative abundance of the new species.

2.3. Morphological study

Specimens for morphological study were photographed in water under a Wild M440 stereomicroscope using reflected light. For more detailed examination, the allogromiids were placed in glycerol in a cavity slide and examined and photographed under an Olympus BH2 compound microscope. The results were recorded in Ilford Delta 100ASA film and scanned into a computer. Test measurements were made to the nearest 10 μm using an eyepiece graticule fitted to a Wild M50 dissecting microscope.

2.4. Molecular analysis

A fragment of the SSU rRNA gene was amplified by PCR with the primer pair s14F3 (5’ ACG CA(AC) GTG TGA AAC TTG) and sB (5’ TGA TCC TTC TGC AGG TTC ACC TAC), as described in Pawlowski (2000). In some cases, the PCR products were re-amplified using nested primer s14F1 (5’ AAG GGC ACC ACA AGA ACG C). The amplified PCR products were purified using a High Pure PCR Purification Kit (Roche Diagnostics), then either sequenced
<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude (°S)</th>
<th>Longitude (°W)</th>
<th>Depth (m)</th>
<th>Phytodetritus</th>
<th>Environmental conditions</th>
<th>Number of specimens examined</th>
<th>Morphology</th>
<th>Molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>131#7</td>
<td>65°19.45′</td>
<td>51°30.98′</td>
<td>2986</td>
<td>Thin surface veneer of greenish material</td>
<td>Dark, greenish-grey silty clay; moderate current activity; interpreted as contourite deposit</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131#9</td>
<td>65°18.54′</td>
<td>51°31.93′</td>
<td>2986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131#10</td>
<td>65°19.56′</td>
<td>51°34.31′</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132#5</td>
<td>65°17.66′</td>
<td>53°22.98′</td>
<td>2002</td>
<td>Somewhat thicker layer of greenish material</td>
<td>Dark greenish-grey sandy silt; sluggish current; interpreted as a glacigenic hemipelagite</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132#7</td>
<td>65°17.66′</td>
<td>53°22.98′</td>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>65°20.23′</td>
<td>54°12.65′</td>
<td>1166</td>
<td>No obvious phytodetritus</td>
<td>Greenish-grey silty sand; interpreted as contourite</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>65°19.90′</td>
<td>48°5.55′</td>
<td>4060</td>
<td>Quite a lot of phytodetritus present</td>
<td>Greenish-grey silty clay; interpreted as hemipelagite</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135#6</td>
<td>64°59.94′</td>
<td>43°00.68′</td>
<td>4670</td>
<td>Sparse amounts of phytodetritus</td>
<td>Surficial sediment very soft and watery; Greenish-grey silty clay; interpreted as hemipelagite</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135#8</td>
<td>65°00.01′</td>
<td>42°59.91′</td>
<td>4678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136#6</td>
<td>64°00.94′</td>
<td>39°06.31′</td>
<td>4730</td>
<td>A few cores with some fluffy surface material</td>
<td>Dark greenish-grey silty clay; interpreted as hemipelagite</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136#8</td>
<td>64°01.64′</td>
<td>39°05.14′</td>
<td>4736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137#6</td>
<td>63°44.99′</td>
<td>33°47.80′</td>
<td>4735</td>
<td>Some cores with a lot of brownish-green phytodetritus, but amounts very variable</td>
<td>Dark greenish-grey silty clay; interpreted as low-energy hemipelagite</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137#8</td>
<td>63°45.03′</td>
<td>33°47.95′</td>
<td>4735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138#3</td>
<td>62°57.69′</td>
<td>27°53.60′</td>
<td>4490</td>
<td>More or less complete layer of degraded-looking (brownish) phytodetritus in some cores but amounts very variable</td>
<td>Dark greenish-grey clayey silt containing biogenic siliceous material and volcanic glass; interpreted as low-energy hemipelagite</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138#5</td>
<td>62°57.81′</td>
<td>27°53.99′</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138#7</td>
<td>62°58.00′</td>
<td>27°53.85′</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138#9</td>
<td>62°57.90′</td>
<td>27°54.11′</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138#11</td>
<td>62°58.02′</td>
<td>27°54.06′</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>58°50.81′</td>
<td>23°58.55′</td>
<td>6326</td>
<td>No obvious phytodetritus</td>
<td>Dark greyish-brown sandy silt; interpreted as hemipelagite or pelagite</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

directly or ligated into pGEM-T Vector system (Promega) and cloned in XL-2 Ultracompetent Cells (Stratagene). Sequencing reactions were prepared by using an ABI-PRISM Big Dye Terminator Cycle Sequencing Kit and analysed with an ABI-377 DNA sequencer (Perkin-Elmer), all according to the manufacturer’s instructions.

Sequences were aligned manually to the large database of foraminiferan sequences, using the Seaview software (Galtier et al., 1996); 592 sites were selected for analysis, including 218 variable and 156 informative sites. Phylogenetic analyses were performed with the neighbour joining (NJ) method (Saitou and Nei, 1987), applied to distances corrected using the Kimura 2 parameters model (Kimura, 1980), the Hasegawa–Kishino–Yano model (Hasegawa et al., 1985) and the LogDet model (Lockhart et al., 1994), and the maximum likelihood (ML) method using the tree-building algorithm of FASTDNAML (Olsen et al., 1994). All characters were equally weighted and the transition-transversion ratio was set to 0.914. The reliability of internal branches was assessed by bootstrapping (Felsenstein, 1985) with 1000 re-sampling for the NJ and 100 re-sampling for the ML tree, respectively. The Phylo_win program (Galtier et al., 1996) was used for distance computations using various models, NJ and ML tree-building and bootstrapping.

3. Systematics

We follow recent suprageneric classifications (Loeblich and Tappan, 1987; Sen Gupta, 1999) by placing the new genus in the Order Allogromiida. However, molecular genetic studies suggest that the monothalamous foraminifera currently accommodated within the Order Allogromiida (organic walls) and the Order Astrorhizida (agglutinated walls) include a number of phylogenetic lineages (clades) that cut across these traditional, morphology-based taxa (Pawlowski et al., 2002b, 2003). Moreover, none of the lineages so far recognised
corresponds to any of the allogromiid families and subfamilies defined by Loeblich and Tappan (1987). In view of the uncertainty in the higher level classification of monothalamous foraminifera resulting from these molecular investigations, we have avoided placing the new genus in an existing allogromiid family:

Class Foraminifera Lee, 1990
Order Allogromiida Loeblich and Tappan, 1961
Genus Bathyallogromia gen. nov.

Derivation of name: Bathy (Greek)—deep, referring to the deep-water habitat of this Allogromia-like morphotype.

Diagnosis: Test monothalamous, almost spherical, 140–450 μm in diameter; wall transparent, proteinaceous, with smooth outer surface devoid of agglutinated grains; single aperture located in the centre of low, broad projecting region; cytoplasm light grey or greenish, containing various inclusions which often include mineral particles.

Remarks: Molecular evidence suggests that the new genus is not closely related to morphologically similar monothalamous taxa such as Allogromia. Instead, it appears to belong to a clade which includes most deep-sea monothalamous foraminiferal species so far examined (see Discussion). A comparison with morphologically similar species is given below.

Type species: Bathyallogromia weddellensis sp. nov.

Derivation of name: Refers to the Weddell Sea, Antarctica.

Type material: The holotype is from ANDEEP Station 136 (64°01’S, 39°06’W; 4735 m water depth) in the western Weddell Sea. It is deposited in the Senckenburg Museum, Frankfurt, Germany, under registration number SMF XXVII 7509. Ten paratypes (the largest specimens among those illustrated in Fig. 2A) are deposited under registration no. SMF XXVII 7510.

Other material examined: ANDEEP Stations 131 (65°19’S, 51°23’W; 3000 m water depth) 13 specimens; Station 132 (65°17.66’S, 53°23’W; 2000 m water depth) 32 specimens; Station 135 (65°00’S, 43°00’W; 4675 m water depth) 21 specimens; Station 137 (63°45’S, 33°47.9’W; 4735 m water depth) 2 specimens; Station 138 (62°58’S, 27°54’W; 4500 m water depth) 10 specimens.

Diagnosis: As for genus.

Description

Test morphology: The test is light in colour and approximately spherical to broadly oval in shape (Fig. 2). One hundred and twenty-four specimens had the following dimensions: length (measured along the axis passing through the aperture) 150–450 μm (mean 251 μm, standard deviation 54 μm), width 140–440 μm (mean 231 μm, standard deviation 53 μm) (Fig. 3), length/width ratio 0.88–1.37 (mean 1.09, standard deviation 0.08). The aperture is situated on a broad, low, mound-like projection with sloping sides and a slightly
uneven outer edge (Figs. 4A, C, E and F). This ‘apertural collar’ is only visible when the test is orientated correctly. A thread of cytoplasm usually extends along the axis of the mound to the aperture. A corresponding invagination of the cytoplasm (‘peduncular sheath’) forms an inward extension of the aperture into the cytoplasm (Figs. 5A and B), although this feature is often indistinct and is not visible in all specimens. The test wall is transparent and colourless and appears as a thin but distinct line under a compound microscope. When placed in glycerol, specimens from sites > 4000 m water depth retain their shape, whereas those from the 2000 and 3000 m sites tend to shrink.

Cell contents: When specimens are mounted in glycerol and viewed under a compound microscope, the cytoplasm appears finely granular. A single large nucleus, 30–36 μm in diameter, is sometimes visible (Figs. 4B and 5E). The cytoplasm contains numerous other inclusions, including mineral grains, that are scattered throughout the cytoplasm and not concentrated in any particular area (Figs. 5C, D, F).

Remarks
Comparison with other species: In terms of size and overall test morphology, the new species resembles Allogromia laticollaris Arnold, a well-known shallow-water allogromiid that occurs in intertidal to shallow subtidal areas around the coasts of North America and Europe (Arnold, 1948, 1955). An obvious morphological feature of A. laticollaris is the presence of a well-developed ‘peduncular sheath’, an internal extension of the apertural structure that occupies more than a half of the diameter of some specimens. A similar structure is sometimes visible in B. weddellensis but is never so clearly developed. The new species often possesses intracellular mineral grains and lacks the deep orange coloration of A. laticollaris, although the latter feature could reflect differences in diet. B. weddellensis also resembles Allogromia crystallifera Dahlgren, described from 80 to 100 m water depth in the Gullmar Fjord, Swedish west coast (Dahlgren, 1962). Both species accumulate intracellular mineral grains but A. crystallifera is larger (usually 500–700 μm) with an oval outline and a tubular apertural structure. Other Allogromia species, reviewed by Rhumbler (1904), are poorly characterised and difficult to compare with our new species. The best known is Allogromia ovoidea Rhumbler, a species that occurs off Bergen (Norway), in the North Sea off Kiel, and in the Adriatic. It has a more elongate shape than B. weddellensis and yellow to reddish or brown cytoplasm.
Variation in cell contents: The colour of the cell body and the nature of its inclusions exhibit considerable inter-station variability. The main variations are as follows.

Station 136 (type locality; 4740 m water depth). The cytoplasm is greyish or greenish-grey and the cell contents varied and heterogeneous. Transparent, angular mineral grains are present in all
Fig. 5. *B. weddellensis* gen. & sp. nov. Specimens from type locality (Station 136) mounted in glycerol and photographed using transmitted light. (A) Aperture with short peduncular sheath; (B) specimen with focus on peduncular sheath; (C–F) specimens with focus on mineral grains and other cellular inclusions. Arrowhead indicates nucleus. Scale bars = 50 μm.
specimens and are sometimes common. A variety of transparent, vacuole-like inclusions of varying shapes and sizes, some of them (16–18-μm diameter) resembling red blood cells, are also present. Fairly large, transparent, sack-like and flask-shaped structures (Figs. 5C–E) and curved, linear inclusions occur in many specimens.

Station 135 (4680 m). The pale greenish-grey cytoplasm contains variable numbers of the small, transparent ‘vacuoles’ resembling red blood cells. Some larger inclusions, usually transparent but occasionally dark in colour, are also present. Obvious mineral grains occur in some specimens but are not as common as at the type locality.

Station 138 (4500 m). The cytoplasm is greenish and tiny spherical bodies, possibly algal cells, are numerous. Large, colourless ‘vacuoles’ occur occasionally but obvious mineral grains are rare.

Station 131 (3000 m). Most specimens are packed with small, transparent, vacuole-like structures, while others contain numerous small, rounded, brownish particles. One specimen contains a single diatom.

Station 132 (2000 m water depth). The cytoplasm is greenish, possibly due to the presence of numerous small inclusions that may be algal cells. More obvious inclusions include spherical, transparent ‘vacuoles’, a variety of angular mineral grains, some black but most colourless, occasional spicule-like particles, and rarely, large, stercomatoid-like bodies.

These variations may reflect differences in the availability of food particles, in particular, the small algal cells which impart a greenish colour to the cytoplasm. The greenish colour was most evident at Stations 132 and 138 where a phyto-detrital layer was fairly well developed (Table 1). There is no evidence that dietary preferences vary from station to station.

Molecular characterisation

Phylogenetic position: Phylogenetic analysis of partial SSU rRNA gene sequences shows that B. weddellensis branches within a clade of monothalamous foraminifers which, together with some monothalamous lineages (Psammosphaera + five undetermined allogromiids) and the polythalamous rotaliids and textulariids, form a well-supported (95/99%) radiation in the ‘crown’ of foraminiferal tree (Fig. 6). This clade, corresponding to lineage C in Pawlowski et al. (2002b), comprises a considerable variety of morphotypes, ranging from organic-walled allogromiids (Gloio-gullmia, Cylindrogullmia) to large spherical agglutinated saccamminids (Pilulina?, Saccammina), tubular rhabdamminids (Rhabdammina), and the large agglutinated amoeboid genus Toxisarcon. The grouping of these genera is supported by high bootstrap values in all analyses (97/100%).

The position of B. weddellensis within the clade is not well established. In all analyses, B. weddellensis branches as a sister group to an undescribed allogromiid (J6) from Mediterranean caves, which probably represents the same genus. However, the relationships between Bathyallogromia and other genera grouping in the same clade depend on the type of analysis and model of nucleotide substitution. In the ML tree, Bathyallogromia branches as a sister group to Saccammina sphaerica, another deep-sea species that also occurs in the Weddell Sea (Fig. 6). In the NJ K2 and LogDet trees, however, Bathyallogromia branches between the clade (Gloio-gullmia + Rhabdammina + Saccammina + Toxisarcon) and Cylindrogullmia, while in the NJ HKY tree, it branches at the base of the clade, as a sister group to all other genera (data not shown). None of these positions is supported by higher bootstrap values, suggesting that the relationships within the B. weddellensis clade cannot be resolved using the SSU rRNA gene sequences.

Intraspecific variations: Phylogenetic analysis of 22 sequences of B. weddellensis, representing 16 isolates from eight stations, shows very small intraspecific variations (Fig. 7). Eighteen sequences form a homogenous group with sequence divergence lower than 0.5%. Within this group, the sequences of cloned PCR products from the same isolate show the same level of divergence as the directly sequenced PCR products from different isolates, suggesting that the 0.5% divergence corresponds to the intra-individual variation among different copies of rRNA gene in B. weddellensis. There are four sequences that differ from this group by about 1% sequence divergence (isolates 3337, 3341, 3362, 3434 in Fig. 7). These sequences may represent either the rapidly
evolving copies of rRNA genes or a cryptic speciation of *B. weddellensis*. For comparison, the sequence divergence between 22 sequences of *B. weddellensis* and the most closely related sequence of the undescribed Mediterranean allogromiid (J6) averages 5–6%.

Our analyses do not show any genetic difference between isolates of *B. weddellensis* collected from different depths. The isolates from six stations, with depths ranging from 1080 to 6330 m, group together in the clade of 18 sequences (Fig. 7). Among the remaining four sequences, three originating from stations 131 and 134 are not represented in the main clade. The intermediate depths of these two stations, 3050 and 4060 m, respectively, indicate that the divergence of these sequences is not related to water depth.

Distribution and relative abundance: *B. weddellensis* occurred in the Weddell Sea from 1080 m to 6330 m water depth. The new species was represented by three individuals (=1% of total ‘live’ foraminiferal fauna) in a multiple core subsample (3.45 cm² surface area) from Station 132 (2000 m), five individuals (=2% of total) in a subsample from Station 131 (3000 m water depth), and 16 individuals (=11% of total) in a subsample from...
Station 137 (5000 m). Specimens of *B. weddellensis* were not found in subsamples from Stations 133 and 134 (1000 and 4000 m, respectively); cores obtained at Stations 135, 136 and 138 have not yet been analysed quantitatively.

4. Discussion

DNA sequences of the new species diverge from those of its closest known relative (the undescribed species J6) by an average of 5–6%. There are no strict rules for defining foraminiferal species using molecular data. In a study of foraminifera from the coastal Explorers Cove site, Pawlowski et al. (2002a) used a 5% sequence divergence as a lower limit to define ‘species’ (phylotypes). According to this criterion, *Bathyallogromia weddellensis* and J6 are distinct species, a conclusion consistent with their geographical separation.

The molecular evidence indicates that *B. weddellensis* is not related to either *Allogromia laticollaris* or to *A. crystallifera*, the two species which it most closely resembles morphologically. The former species branches together with *Edaphoallogromia australica* at the base of our tree.
(Fig. 6), and the second branches with Psammo-
phaga simplora in the clade that groups morpho-
types with mineral inclusions. Interestingly, there
is little morphological relation between Bathyallo-
gromia and other genera which are included in the
same clade. These vary from spherical to tubular
or amoeboid forms. The clade also encompasses a
variety of different wall types, ranging from
organic (Gloiogullmia, Cylindrogullmia) to loosely
agglutinated (Toxisarcon) and firmly agglutinated
(Rhabdammina, Saccammina). One species (Piluli-
na?) possesses a finely agglutinated test which is
protected by a second coarsely agglutinated cyst.
These new molecular analyses support previous
indications that gross test morphology and wall
type are poor taxonomic characters for phyloge-
netic systematics of monothalamous foramini-
ferans (Pawlowski et al., 2002b). Finding morpho-
logical or ultrastructural features that provide
reliable indicators of taxonomic relationships
above the generic level remains a challenge for
future studies of this group.

A remarkable feature of B. weddellensis is the
fact that individuals are genetically almost iden-
tical across a very wide bathymetric range, from
1100 m to >6000 m. This suggests that there is
continuous gene flow between bathyal and abyssal
populations. Some other foraminiferan species also
appear to have broad depth ranges; for example,
Adercotryma glomeratum is reported to occur from
197 to 3400 m in the Arctic Ocean (Wollenburg
and Kuhnt, 2000). In the absence of molecular
data, however, it is not possible to be certain that
these populations represent a single species (Good-
ay et al., 2004). Our results contrast sharply with
evidence for genetic differentiation among inverte-
brate species on continental slopes at lower
latitudes in the Northern Hemisphere. Chase et
al. (1998) found that populations of the bivalve
deminucula atacellana from slope (<2500 m water
depth) and rise (>2500 m) sites in the NW
Atlantic were genetically distinct over a horizontal
distance of only 134 km, despite the good disper-
sion capabilities of this species. Considerable
generic differentiation exists within upper bathyal
(457–1102 m water depth) populations of the
gastropod Frigidoalvania brychia from the same
area (Quattro et al., 2001). Cryptic speciation is
reported among populations of the scavenging
amphipod Eurythenes gryllus from different depth
zones in the North Atlantic and central North
Pacific (France and Kocher, 1996) and four
molluscan morphospecies from 500 to 5000 m
depth on the NE United States continental margin
(Etter et al., 1999). Recent modelling studies
suggesting that speciation can occur more easily
along an environmental gradient (e.g. water depth)
than in the absence of a gradient (Doebeli and
Dieckmann, 2003) are consistent with these results.
Why B. weddellensis has such a broad bathymetric
range in the Weddell Sea is not clear, particularly
since it is also associated with a variety of different
sediment types within this range (Table 1).
Possibly, this pattern is related to the wide
dispersion potential of foraminiferan propagules
(Alve and Goldstein, 2002, 2003), coupled with the
existence of a virtually isothermal water column
around the Antarctic continent. It has been
suggested that the lack of a temperature barrier
in the Antarctic water column facilitates the
penetration of species from shallower into deeper
waters (Tyler and Young, 1998; Tyler et al., 2000).

Bathyallogromia weddellensis or closely related
species may be widely distributed geographically in
the deep ocean. Specimens that are morphologi-
cally very similar to those from the Weddell Sea
occur in the Indian Ocean (Gooday, 1994, Fig. 3c
therein) and at the Porcupine Abyssal Plain
(Gooday, unpublished). However, confirmation
that these forms represent the same species must
await molecular characterisation.

Acknowledgements

We are grateful to Prof. A. Brandt and Dr. B.
Hilbig, organizers of ANDEEP project, to Prof.
D. Fütterer, Chief Scientist on Polarstern Cruise
ANT XIX/4, and to the captain and crew of R/V
Polarstern, for facilitating the collection of samples
from western Weddell Sea. The unpublished
sequence of the undescribed allogromiid J6 from
Mediterranean caves was kindly provided by Jean-
Pascal Gillig. The reviewers, Drs. F. Hannah, M.
Kaminski and H. Kitazato, made helpful com-
ments that improved the manuscript. We thank
Mrs. Kate Davis for her help in the preparation of the figures. This work was supported by grants from the Swiss National Science Foundation (31–59145.99 and 3100A0-100415) and the UK Natural Environment Research Council (NER/B/S/2001/00336). This is ANDEEP publication no. 6.

References

